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ABSTRACT

INTERPLAY BETWEEN SINGLE-PARTICLE AND COLLECTIVE
MOTION WITHIN NUCLEAR DENSITY FUNCTIONAL THEORY

By

Chunli Zhang

Nuclear density functional theory (DFT) can be employed to study properties of ground

states (g.s.) and selected excited states of nuclei anywhere in the nuclear chart. The focus of

this work is on the description of single-particle (s.p.) and collective motion in nuclei using

nuclear DFT. Since nuclear collective phenomena result from a coherent motion of individual

nucleons, the sharp distinction between these two modes cannot be made. For example,

nuclear rotation leads to the alignment of angular momentum with rotational frequency,

which results in the variation of occupations in s.p. orbitals. Spontaneous fission leads to

not only large geometrical rearrangements, but also impacts the internal shell structure.

This dissertation is divided into three parts. In the first part, I shall briefly introduce the

nuclear model used. In the second part, the general formalism of nuclear DFT and its main

ingredient, the energy density functional (EDF) will be outlined. In the last part, the appli-

cations of nuclear DFT will be presented. First, we study the nuclear shapes and associated

rotational bands for nuclei with A ≈ 110; yrast, near-yrast band structures, angular momen-

tum alignments with rotational frequency, and transition quadrupole moments are analyzed

and compared to experimental data. Then, based on the Kerman-Onishi condition, we per-

form systematic tilted-axis-cranking calculations for triaxial strongly deformed (TSD) bands

in 160Yb, explain the nature of these TSD bands, and predict possible collective behavior at

high spin. Next we explore cluster structures in light nuclei using the novel concept of the

nucleon localization function (NLF). The NLF is then used to study the internal structure



evolution and emergence of fragments in fissioning heavy nuclei along their predicted fission

pathways. We then show that the NLF can be employed to identify fission fragments well

before scission in 240Pu. The last section contains the conclusions of this dissertation and

offers perspectives for future work.



This dissertation is dedicated to my grandparents.
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Chapter 1

Introduction

The atomic nucleus is a strongly-correlated, self-bound many-body system, which exhibits

a variety of collective and single-particle non-collective phenomena. In collective motion,

many nucleons are involved, for example, nuclear vibration, nuclear rotation, fission, which

could result in external observable property changes. While in single-particle motion individ-

ual nucleons move independently, internal structures governed by shell effects are impacted,

which can cause the particle-hole excitation, pair breaking and clustering of nucleons. Nu-

merous microscopic theoretical approaches have been developed to study nuclear structure.

They can be grouped into three general categories: ab initio methods [9–13], shell model

(or configuration interaction) theories [14, 15] and nuclear DFT based on the self-consistent

mean field approach [16,17].

In this dissertation, the main topic of study is collective motion, including (i) nuclear

rotation based on triaxial configurations that exhibit strong quadrupole collectivity and

(ii) spontaneous fission in heavy nuclei that is associated with quadrupole and octupole

collective dynamics through large-amplitude collective motion. Since nuclear DFT describes

nuclear systems in terms of local densities, the resulting spontaneous symmetry breaking

effects [18, 19] can be employed to define nuclear geometries.

On the other hand, there is always a subtle interplay between collective and s.p. motion

at the same energy scale. For example, as the rotational frequency increases, the alignment of

angular momentum within the collective rotational band can lead to band-crossing [18,20,21],
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at which the lowest (yrast) configuration will change rapidly. In self-consistent mean-field

methods based on nuclear DFT, the change of s.p. configurations can be expressed through

occupations of s.p. orbitals. The resulting structural changes can be described using the

cranking approach, where the nuclear motion is described in the rotating reference frame.

By the same token, in spontaneous fission, as the system evolves along the fission pathway,

its internal shell structure is impacted dramatically. Here, our strategy is to introduce

the nucleon localization function [22], which will help to visualize nucleon clustering and

correlations imprinted by shell effects.

The dissertation is organized as follows. Nuclear DFT is introduced in Chap. 2. Appli-

cations to triaxial structures are explored in Chap. 3. In Chap. 4, the nucleon localization

function [23,24] is employed to illustrate the emergence of clustering structures in light nuclei

and fission fragments in heavy nuclei. Finally, conclusions and prospects for future work are

summarized in Chap. 5. A brief introduction to these chapters is given in the following.

1.1 Nuclear density functional theory

Since the nucleus is a self-bound system which may display both individual nucleon excita-

tions and collective excitations at the same energy scale, it is a challenge to describe it using a

single theoretical framework. Nuclear DFT incorporates nucleon correlations by introducing

complex density dependence into EDFs, while collective motion can be considered explicitly

by introducing Lagrange multipliers to constrain the collective coordinates, such as nuclear

multipole moments and angular momentum. Nuclear DFT is a flexible tool; it has been

employed to a variety of phenomena, including shape deformations [17, 25], neutron/proton

drip-lines [26], two-proton decay [27], (large-amplitude) collective motion [17, 28, 29], and
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nuclear pasta [30, 31] in neutron stars. Since the scope of our research ranges from light to

heavy nuclei, nuclear DFT is our tool of choice.

1.2 Nuclear shapes and collective motion

The atomic nucleus can exhibit different shapes, for example, spherical, prolate/oblate, tri-

axial, pear-like, etc. The collective rotation of a spherical nucleus is impossible due to the

indistinguishability of rotated configurations, while a deformed nucleus can exhibit collective

rotational motion that results in the presence of rotational bands [18, 32]. The most com-

mon case of this is an axially deformed nucleus with prolate or oblate shape, with angular

momentum built along the axis that is perpendicular to the symmetry axis of the system.

Another less common case is that of the triaxial nucleus. Here, the collective angular mo-

mentum can be aligned in any direction as the axial symmetry of the system is broken.

Experiment provides very indirect information about triaxial configurations. Theoretically,

very few nuclei are predicted to be triaxially deformed in their ground states.

Theoretically, the macroscopic-microscopic model [33] and traditional cranked shell model

[34, 35] have been employed to study nuclear shapes and rotations. However, unlike rela-

tivistic [6, 36] and non-relativistic [37, 38] mean-field models, those approaches are not self-

consistent, and this constitutes a major problem. In my research, nuclear DFT with recently

optimized EDFs is applied to study triaxial shapes and rotational motion in the A ≈ 110

region and high-spin bands in 160Yb interpreted in terms of TSD structures. By solving

the cranked Hartree-Fock and Hartree-Fock-Bogoliubov equations, characteristic features of

rotational bands, such as band-crossings and shape changes, will be studied.
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1.3 Nucleonic clustering

The appearance of cluster states in atomic nuclei is a ubiquitous phenomenon with many

implications for both nuclear physics and astrophysics [39–43]. While several factors are

known to contribute to clustering, a comprehensive microscopic understanding of this phe-

nomenon still remains elusive. Cluster configurations can be energetically favored due to the

large binding energy per nucleon in constituent clusters, such as α particles. This binding-

energy argument has often been used to explain properties of α-conjugate nuclei [44], cluster

emission [45,46] and fission [47], and the appearance of a gas of light clusters in low-density

nuclear matter [48–50] and in the interior region of heavy nuclei [51]. Another important fac-

tor is the coupling of cluster states to decay channels, which explains [52,53] their occurrence

at low excitation energies around cluster-decay thresholds [54].

The microscopic description of cluster states requires the use of an advanced many-

body, open-system framework [52, 53, 55] employing realistic interactions, and there has

been significant progress in this area [56–60]. Theoretically, the Bloch-Brink alpha-cluster

and antisymmetrized molecular dynamics models [39–41] have been used to describe cluster

states. The former adopts multi-center cluster wave functions and is parametrized by the

geometry of cluster center positions; it is mainly used in α-conjugate nuclei assuming the

existence of cluster states. The latter is based on a Slater determinant consisting of Gaussian

wave packets.

For a global characterization of cluster states in light and heavy nuclei, a good starting

point is nuclear DFT. Here, cluster states have a simple interpretation in terms of quasi-

molecular structures. Since the mean-field approach is rooted in the variational principle, the

binding-energy argument favors clustering in certain configurations characterized by large

4



shell effects of constituent fragments [61–68]; the characteristics of cluster states can be

indeed traced back to the symmetries and geometry of the nuclear mean-field [69,70].
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Chapter 2

Theoretical Tool: Nuclear DFT

In this chapter, the theoretical model used in my research is described. In section 2.1, we

shall outline the theoretical foundations of nuclear DFT; the single-reference Skyrme EDF

used in this work is introduced in section 2.2. In section 2.3, the self-consistent Skyrme EDF

method is presented, and I explain how the mean-field equations can be solved. Finally,

the nuclear DFT solvers used in my research, and their characteristics and limitations, are

discussed in section 2.4.

2.1 General consideration and formalism

The Hamiltonian of a many-body system can be written as:

Ĥ = T̂ + V̂ + Ûext, (2.1)

where V is the inter-particle interaction and Uext is the external field. The eigenstates of

the interacting system |Ψ〉 can be obtained by, e.g., diagonalizing the Hamiltonian, and the

one-body local nucleonic density can be written as:

ρ(r) = N

∫
dr2 · · · drA|Ψ(r, r2, · · · , rA)|2. (2.2)

DFT is rooted in the theorems formulated by Hohenberg and Kohn [71]. It was originally
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used to investigate electronic structure in quantum chemistry and condensed matter physics,

and - in parallel developments - was extended to nuclear physics as well. Hohenberg and Kohn

demonstrated [71] that there exists a universal functional of the density, F [ρ(r)], independent

of external potential, Uext, such that the total energy, E ≡ F [ρ(r)] +
∫
Uext(r)ρ(r)dr, has

its minimum at the exact g.s. associated with the external potential (see Appendix A for

the demonstration).

Therefore, everything would be simple as long as we knew the universal functional. Hy-

pothetically, one could scan various external potentials and find the functional E[ρ(r)] with

respect to the density ρ(r). However, such a procedure is impossible as we do not know the

exact inter-nucleon interaction in medium. There exist various approximation schemes to

construct the functional for the energy, e.g., the Skyrme EDF, the Gogny EDF, EDF from

effective field theory (EFT), etc. They are derived from the zero-range Skyrme force [72,73],

the finite-range Gogny force [74–76] and using the EFT framework [77], respectively, even

though E[ρ] in DFT does not have to be associated with any nuclear interaction. In my

work, the Skyrme EDF is the functional of choice, primarily due to its simplicity and success

in explaining the data; it will be introduced in the next section.

2.2 Skyrme energy density functional

For the zero-range Skyrme force, the total energy of the nucleus, as a functional of one-body

density and pairing matrices, is given by [78]

E[ρ, ρ̃] =

∫
H(r)dr, (2.3)
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where H(r) is a real, scalar, isoscalar, time-even functional of local densities and their

derivatives. The Skyrme EDF (2.3) can be decomposed into the kinetic energy density,

interaction energy density, pairing energy density, Coulomb energy density, and additional

corrections, such as the center-of-mass correction [78]:

H(r) = HKin(r) +HInt(r) +Hpairing(r) +HCoul(r) +Hcor(r). (2.4)

Before we present the form of each term in Eq. (2.4), we shall introduce the local densities

used.

2.2.1 Local densities

In the mean-field approximation, the one-body nonlocal density and pairing density are

defined as

ρα(rs, r′s′) = 〈Ψ|a†
r′s′ars|Ψ〉 , (2.5a)

ρ̃α(rs, r′s′) = −2s′ 〈Ψ|ar′−s′ars|Ψ〉 , (2.5b)

respectively, where a
†
rs and ars create and annihilate a neutron (α = n) or proton (α = p)

at the space point r with spin s, and |Ψ〉 is a many-body wave function. By expanding the

nonlocal particle density and pairing density in spin space, one obtains:

ρα(rs, r′s′) =
1

2
ρα(r, r′)δss′ +

1

2
sα(r, r′) · σss′ , (2.6a)

ρ̃α(rs, r′s′) =
1

2
ρ̃α(r, r′)δss′ +

1

2
s̃α(r, r′) · σss′ , (2.6b)
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where σss′ = (σx
ss′ ,σ

y
ss′ ,σ

z
ss′) are spin Pauli matrices and ρα(r, r′), sα(r, r′), ρ̃α(r, r′) and

s̃α(r, r′) are derived as

ρα(r, r′) =
∑
s

ρα(rs, r′s), (2.7a)

sα(r, r′) =
∑
ss′

ρα(rs, r′s′)σss′ , (2.7b)

ρ̃α(r, r′) =
∑
s

ρ̃α(rs, r′s), (2.7c)

s̃α(r, r′) =
∑
ss′

ρ̃α(rs, r′s′)σss′ . (2.7d)

Since the Skyrme EDF is expressed as a functional of local densities and their derivatives,

the following nucleonic densities need to be considered [79,80]:

1. Particle-density ρα(r) and spin density sα(r):

ρα(r) = ρα(r, r), (2.8a)

sα(r) = sα(r, r). (2.8b)

2. Kinetic density τα(r) and vector kinetic density Tα(r):

τα(r) = [∇ ·∇′ρα(r, r′)]r=r′ , (2.9a)

Tα(r) = [∇ ·∇′sα(r, r′)]r=r′ . (2.9b)
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3. Momentum density jα(r) and spin-current tensor
↔
J α(r):

jα(r) =
1

2i
[(∇−∇′)ρα(r, r′)]r=r′ , (2.10a)

Jµν,α(r) =
1

2i
[(∇µ −∇′µ)sν,α(r, r′)]r=r′ . (2.10b)

4. Pairing density ρ̃α(r):

ρ̃α(r) = ρ̃α(r, r). (2.11)

For each of these local densities, isoscalar (T = 0) and isovector (T = 1) densities are

introduced. For example, isoscalar and isovector kinetic densities are defined as

τ0(r) = τn(r) + τp(r), τ1(r) = τn(r)− τp(r), (2.12)

respectively. Then, each term in Eq. (2.4) can be specified as a functional of these local

densities.

2.2.2 Skyrme EDF formalism

The kinetic energy density can be written as:

HKin(r) =
~2

2m

(
1− 1

A

)
τ0(r), (2.13)

where
(

1− 1
A

)
stems from a simple approximation to the center-of-mass correction [81].

The interaction energy density is derived from the Skyrme effective nuclear potential

10



[72, 73], and can be written as [80]

HInt(r) =
∑
t=0,1

(χeven
t (r) + χodd

t (r)), (2.14)

where the isospin index, t, labels isoscalar (t = 0) and isovector (t = 1) densities (for a

detailed derivation of the interaction energy density, one can refer to the appendix in [82]).

The χeven and χodd terms generate the time-even and time-odd mean fields, respectively [80]:

χeven
t (r) ≡ C

ρ
t ρ

2
t + C

∆ρ
t ρt∆ρt + Cτt ρtτt + CJt

↔
Jt

2
+ C∇Jt ρt∇ · J t, (2.15a)

χodd
t (r) ≡ Cst s

2
t + C∆s

t st ·∆st + CTt st · T t + C
j
t j

2
t + C

∇j
t st · (∇× jt). (2.15b)

The coupling constant C
ρ
t contains a density dependent term, which is written as

C
ρ
t = C

ρ
t0 + C

ρ
tDρ

γ . (2.16)

Thus, the standard Skyrme interaction energy density is defined by means of the following

parameters:

{Cρt , C
∆ρ
t , Cτt , C

J
t , C

∇J
t }t=0,1

{Cst , C∆s
t , CTt , C

j
t , C

∇j
t }t=0,1 and γ.

(2.17)

One should note that when time reversal symmetry is conserved, the time-odd terms vanish.

The pairing channel can be parametrized by a density-dependent delta-pairing force with

mixed volume and surface features [83],

V
(n,p)
pair = V

(n,p)
0

(
1− 1

2

ρ0(r)

ρc

)
δ(r − r′), (2.18)

11



where V
(n,p)
0 is the pairing strength for neutrons (n) and protons (p), ρ0(r) is the isoscalar

local density, and ρc is the saturation density, fixed at ρc = 0.16 fm−3. The resulting pairing

energy density can be written as [78]

Hpairing(r) =
∑
α=n,p

V α0
2

[
1− 1

2

ρ0(r)

ρc

]
ρ̃2
α(r), (2.19)

where ρ̃ is the local pairing density.

The Coulomb energy can be divided into the direct term, HDir
Coul, and exchange term,

HExc
Coul. The direct term takes the usual form

HDir
Coul(r) =

e2

2

∫
dr1

ρp(r)ρp(r1)

|r − r1|
, (2.20)

and the exchange term is usually calculated in the Slater approximation [84,85]:

HExc
Coul(r) = −3

4
e2
( 3

π

)1/3
ρ

4/3
p . (2.21)

So far, the Skyrme EDF formalism has been presented. By fitting parameters (2.17) to

selected experiment data, the following Skyrme functionals have been optimized:

• SkM∗ [86]

• SkP [87]

• SLy4 [88]

• SV-min [89]

• UNEDF0 [78]

• UNEDF1 [90]

• UNEDF1-HFB [91]

• UNEDF2 [92].

Of these, the UNEDF family was optimized in the framework of Hartree-Fock-Bogoliubov

theory, which considers the mean-field and pairing channel simultaneously.
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2.3 Mean-field methods based on nuclear DFT

Given the energy functional, one can construct the g.s. density using the Kohn-Sham theorem

[93], which states that for any many-body interacting system, there exists a non-interacting

system with a Kohn-Sham potential VKS, which gives the same density as the original system.

The question is, given an EDF, how can one build the Kohn-Sham potential?

We assume that the Hamiltonian of the original system and the one-body Kohn-Sham

potential can be written as

Ĥ = T̂ + V̂ + Ûext, (2.22)

ĤKS =
A∑
i=1

ĥ(αi), αi = {ri,Si, ti},

ĥ = t̂+ v̂KS,

(2.23)

respectively.

In the Kohn-Sham approximation, the single particle wave functions and energies can be

obtained by solving the one-body Schrödinger equation:

ĥϕi = εiϕi, (2.24)

and the g.s. wave function of the system |Φ〉 can be represented as a Slater determinant

of single particle orbitals with the lowest energies. The corresponding one-body density is

given by,

ρ0(r) =
A∑
i=1

|ϕi(r)|2. (2.25)

If the g.s. wave function for the original interacting system is |Ψ〉, then the g.s. energy
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becomes:

E0 = 〈Ψ|Ĥ|Ψ〉

= 〈Φ|Ĥ|Φ〉+ (〈Ψ|Ĥ|Ψ〉 − 〈Φ|Ĥ|Φ〉)

= 〈Φ|T̂ |Φ〉+ 〈Φ|V̂ |Φ〉+ 〈Φ|Ûext|Φ〉+ (〈Ψ|T̂ + V̂ |Ψ〉 − 〈Φ|T̂ + V̂ |Φ〉).

(2.26)

Here, we introduce:

T = 〈Φ|T̂ |Φ〉 , (2.27a)

EH = 〈Φ|V̂ |Φ〉 , (2.27b)

Eext = 〈Φ|Ûext|Φ〉 , (2.27c)

Exc = 〈Ψ|T̂ + V̂ |Ψ〉 − 〈Φ|T̂ + V̂ |Φ〉 . (2.27d)

Then,

E0 = T + EH + Eext + Exc, (2.28)

where T is the kinetic energy of the non-interacting system and Exc represents the exchange

and correlation energies. Applying the variational principle:

δE0|ρ=ρ0 =
[∑

i

(〈δϕi|t̂|ϕi〉+ 〈ϕi|t̂|δϕi〉)
]
|ρ=ρ0 + (δEH + δEext + δExc)|ρ=ρ0

=
∑
i

εiδ 〈ϕi|ϕi〉 −
[ ∫

vKSδρdr
]
|ρ=ρ0 + (δEH + δEext + δExc)|ρ=ρ0

= 0,

(2.29)
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One obtains:

vKS =
δEext

δρ
+
δEH

δρ
+
δExc

δρ

= Uext + vH + vxc.

(2.30)

Therefore, given E[ρ], the corresponding Kohn-Sham potential can be found by applying

the variational principle. Then, by diagonalizing the resulting mean-field, one can construct

the g.s. wave function, one-body density, and total energy using the Slater determinant

based on the Kohn-Sham orbits.

2.3.1 Hartree-Fock and Hartree-Fock-Bogoliubov equations

The mean-field equations include the Hartree-Fock (HF) equations (which do not include

pairing correlations) and the Hartree-Fock-Bogoliubov (HFB) equations (which account for

the pairing channel). Variation of the Skyrme EDF with respect to ρ and ρ̃ results in the

Skyrme HFB equations [94]:

 h h̃

−h̃∗ −h∗


 Uk

Vk

 =

 Uk

Vk

Ek, (2.31)

where h is the HF field and h̃ is the pairing field:

hn = − ~2

2m
∆ + (Γeven

0 + Γodd
0 + Γeven

1 + Γodd
1 ), (2.32a)

hp = − ~2

2m
∆ + (Γeven

0 + Γodd
0 − Γeven

1 − Γodd
1 ) + UCoul, (2.32b)

h̃q = V0

(
1− V1

(
ρ

ρ0

)γ)
ρ̃q. (2.32c)
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The momentum-dependent mean fields Γ are given by [79,95]

Γeven
t = −∇ · [Mt(r)∇] + Ut(r) +

1

2i

( ↔
∇σ ·

↔
Bt(r) +

↔
Bt(r) ·

↔
∇σ
)
, (2.33a)

Γodd
t = −∇ · [(σ ·Ct(r))∇] + σ ·Σt(r) +

1

2i
(∇ · It(r) + It(r) ·∇) , (2.33b)

where

Ut = 2C
ρ
t ρt + 2C

∆ρ
t ∆ρt + Cτt τt + C∇Jt ∇ · J t + U

′
t , (2.34a)

Σt = 2Cst st + 2C∆s
t ∆st + CTt T t + C

∇j
t ∇× jt, (2.34b)

Mt = Cτt ρt, (2.34c)

Ct = CTt st, (2.34d)

↔
Bt = 2CJt

↔
J t − C∇Jt

↔
∇ρt, (2.34e)

It = 2C
j
t jt + C∇Jt ∇× st. (2.34f)

In Eq. (2.34a), the term U
′
t represents the rearrangement terms resulting from the density

dependence of the coupling constants.

For calculations with constraints, the Routhian E
′

is defined [80]:

E
′

= E + Emult + Ecran + Enumb, (2.35)

i.e., equal to the sum of the energy and the terms responsible for constraints, here including

the multipole, cranking and particle-number constraints.
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For the multipole constraints, the standard quadratic form is taken:

Emult =
∑
λµ

Cλµ(〈Q̂λµ〉 − Q̄λµ)2, (2.36)

where 〈Q̂λµ〉 are the average values of the mass-multipole-moment operator, Q̄λµ are the

constraint values of the multipole moments, and Cλµ are the stiffness constraints.

The cranking constraints are assumed as the simple linear form:

Ecran = −ωy〈Ĵy〉, (2.37)

where Ĵy is the operator of the component of the total angular momentum along the y axis

(due to the assumed symmetry in the codes used), J̄y is the target value, and the rotational

frequency ωy is the corresponding Lagrange multiplier.

The particle-number constraints are given as

Enumb = −λn〈N̂n〉 − λp〈N̂p〉, (2.38)

which ensure the correct neutron and proton numbers. λp and λn are the neutron and proton

Fermi energies.

Variation of the Routhian E
′

results in the constrained HFB equation, where the HF

field in Eq. 2.31 is replaced by

h
′

= h+ 2
∑
λµ

Cλµ(〈Q̂λµ〉 − Q̄λµ)Q̂λµ − ωy ĵy − λ. (2.39)
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By solving the HFB equations, the resulting matrix W†,

 U† V †

V T UT



transforms the particle operators c†, c into the quasiparticle operators β†, β through

 β

β†

 =W†
 c

c†

 .

Then the Hamiltonian H can be approximated as

H = H0 +
∑
k

Ekβ
†
kβk + {higher-order}. (2.40)

The eigenstates of H are the quasi-particle vacuum (with the energy H0), one quasi-particle

states with energies H0 + Ek, two quasi-particle states, and so on.

Since the HFB equations are non-linear (due to the density-dependence of the mean-field

potentials), they are often solved by iterative diagonalization methods. It is worth noting

that, due to the self-consistent symmetry of the HFB equations, if some certain symmetry

is expected in the solution, one should always start from a density initialized with this

symmetry. This limits the size of model space and reduces the computational effort.

2.4 Nuclear DFT solvers

Solving the HF and HFB equations for complex exotic nuclei or nuclei with super-deformed

configurations can be both difficult and time-consuming. In this dissertation, two DFT
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solvers, hfodd and hfbtho, have been employed:

1. hfbtho [94, 96]

hfbtho solves the HFB equations in the cylindrical harmonic oscillator (HO) basis or

in the transformed HO basis obtained by applying a local scale transformation [97,98]

on the HO functions. It implements all the general Skyrme functionals, and is able to

do multiple constraint calculations. However, axial and time-reversal symmetries are

explicitly imposed here.

2. hfodd [1, 80,99–103]

hfodd is more versatile than hfbtho. It solves the HF, HF+BCS and HFB equations

in the HO basis with the Skyrme, Gogny or Yukawa force, and it allows one to break

all geometric and time reversal symmetries. hfodd has been employed to perform

numerous calculations, such as constrained cranking calculations [104] and studies of

spontaneous fission at finite temperatures [7].

Both solvers have been augmented with Open Multi-Processing (OpenMP) and Message

Passing Interface (MPI) routines.
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Chapter 3

Rotation of Triaxial Nuclei

3.1 Introduction

Among the predicted triaxial nuclei, neutron-rich Mo and Ru isotopes with A ≈ 110 are of the

most interest, as they exhibit shape changes and shape-coexistence phenomena [105]. With

increasing neutron number, triaxial deformations are expected to appear in their ground

states due to the occupation of the 1νh11/2 and 1πg9/2 intruder orbitals [33].

Experimentally, the clearest signature of triaxial shapes comes from the γ-ray spec-

troscopy of rotating nuclei. Since evidence for rotational-like behavior in the very neutron-

rich even-even Zr-Pd region was reported in [106], there have been numerous experiments

devoted to shape transitions and rotational properties of nuclei in this region. For example,

the deformed configurations in 103,104,107Zr and 107,108Mo were studied in [107], and a tran-

sition from spherical to triaxial shapes in 104Ru was studied in [108]. After that, more and

more evidence for triaxial deformation in neutron-rich Mo and Ru isotopes started to appear,

including (i) the steady decrease of the γ-band band-head energy in 110Ru and 112Ru [109];

(ii) the collective triaxial behavior of Ru and Mo isotopes through the spectroscopy of fis-

sion fragments [2–4,110–112]; (iii) the measurement of the quasi-γ band in 110Mo [113,114],

and, (iv) the triaxial deformations in 104Ru and 110Mo extracted from E2 and M1 matrix

elements obtained by Coulomb excitation studies [115].

Theoretically, triaxial ground states have been investigated with different models. For
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example, in Ref. [33], triaxial g.s. minima were predicted in neutron-rich Mo isotopes with

N = 62 - 66 using the macroscopic-microscopic approach. In Ref. [116, 117], the largest

shell effects due to triaxial deformations were found around 108Ru. In Ref. [37, 38], po-

tential energy surface calculations with HF and interacting boson models showed shallow

triaxial minima for isotopes with N = 64 - 70. In Ref. [36], self-consistent HFB calculations

with the Gogny D1S interaction predicted triaxial deformations for the even-even isotopes

104 - 110Mo and 104,106Ru. These different predictions come from the extreme softness of

triaxial potential energy surfaces of nuclei in this region.

In the first project, motivated by the new experimental results for the transition quadrupole

moments of rotational bands [6], we used nuclear DFT with the EDF UNEDF0 [78] to de-

scribe yrast structures in Mo and Ru isotopes. Our calculations predict triaxial g.s. de-

formations for 106,108Mo and 108,110,112Ru, and transition quadrupole moments that are

consistent with experiment [29].

Triaxially deformed nuclei can execute not only principal-axis-cranking (PAC), where

the rotation is about one of the principal axes, but also tilted-axis-cranking (TAC) [19,118],

where the rotational axis tilts away from the principal axis (PA). The standard theoretical

model to describe collective rotation is the cranking model, in which the cranking term,

−ω1J1 [18, 32, 119], is added to the mean-field Hamiltonian. In self-consistent PAC calcula-

tions, the nucleus is guaranteed to stay in the PA system. However, in TAC calculations,

spurious processional motion has to be prevented by adding linear constraints, which give zero

off-diagonal matrix elements of the inertia tensor. As shown by Kerman and Onishi [120],

the corresponding Lagrange multipliers depend on the rotational frequencies, angular mo-

menta and quadrupole moments of the system, and the actual relation is given by Eq. (3.6)

in [120] and (3.10) below.
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In the second project, with the proper linear constraints, we first verified the Kerman-

Onishi condition in self-consistent mean-field calculations. We have shown that the solver-

adapted Lagrange multiplier is consistent with the Kerman-Onishi condition to high pre-

cision. I then applied this result in PAC and TAC calculations with linear constraints for

160Yb [104] using the Skyrme HF approach (similar to the calculations for 158Er [121]). As

an illustrative example, below I shall explain the nature of two TSD bands of 160Yb and

also predict the possible large-amplitude collective motion at high spins.

3.2 Triaxial deformation

Before we can investigate nuclear shapes and their associated collective motion, we need to

introduce the parametrization of the nuclear surface, which is given in terms of the length

of a radius vector pointing from the origin to the surface [122]:

R = R(θ, φ) = R0

(
1 + α00 +

∞∑
λ=1

λ∑
µ=−λ

α∗λµYλµ(θ,φ)

)
, (3.1)

where R0 is the radius of a sphere with the same volume. The quadrupole shapes are

described by five parameters α2µ. By a suitable rotation, one can transform to the body-

fixed system characterized by three axes, which coincide with the principal axes of the

mass distribution. Five quadrupole deformation parameters can be thus reduced to two

independent quadrupole variables α20 and α22 and three Euler angles. For convenience, the

so-called Bohr quadrupole deformations are introduced through

α20 = β2 · cos γ,

α22 =
1√
2
· β2 · sin γ.

(3.2)
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In hfodd, the multipole moments are defined as

Qλµ = aλµ ·
3A

4π
·Rλ0 · αλµ, (3.3)

where A is the mass number, R0 can be approximated as
√

5/3 〈r2〉1/2, where 〈r2〉1/2 is the

r.m.s. radius, a20 =
√

16π/5 and a22 =
√

32π/5 [1]. By combining Eq. (3.2) and (3.3), one

can get:

β2 =

√
π

5
· 1

A 〈r2〉 ·
√
Q2

20 +Q2
22, (3.4a)

tan γ =
Q22

Q20
, (3.4b)

which will be used in the following. β2 represents the elongation of the nucleus, and γ is

the triaxial deformation that ranges between (0◦, 60◦) in the absence of rotation. Under

rotation, γ can be extended to the range of (−120◦, 60◦).

3.3 Band crossing and angular momentum alignment

In the cranking model, the total Hamiltonian in the rotating reference frame can be written

as

Hω = H − ω1J1. (3.5)

By applying the variational principle in the rotating frame, the cranked HFB equation be-

comes  h− λ− ωj1 ∆

−∆∗ −h∗ + λ+ ωj∗1


 Uk

Vk

 =

 Uk

Vk

Eωk ,
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where ω is the rotational frequency, which is also the Lagrange multiplier to constrain the

expectation value of the angular momentum. The Eωk can be referred to as the single

quasiparticle Routhian energy.

As the rotational frequency ω increases, the single quasiparticle levels cross at some

frequency ω = ω∗ (e.g. see Fig. 3.3). Beyond the crossing the vacuum configuration changes

from the g-band (with the band-head in the g.s. configuration) to the s-band (with the

band-head in the two quasi-particle configuration). The band crossing will lead to a sudden

change in angular momentum.

In the next section, the shape changes and angular momentum alignment will be inves-

tigated for 106,108Mo and 108,110,112Ru.

3.4 Tilted-axis-cranking calculations and the Kerman-

Onishi condition

In self-consistent HF TAC calculations, when the rotational axis moves away from the PA,

the nucleus has to stay in the PA reference frame. This can be realized by adding linear

constraints, which guarantee that the resulting off-diagonal matrix elements of the inertia

tensor (or quadrupole moment) vanish. Using

Q̂ij ≡ xixj , (3.6)

the following condition should be fulfilled:

〈Φ|B̂|Φ〉 = 0 and B̂k = Q̂ij (i, j, k cyclic). (3.7)
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Thus, the resulting Routhian can be written as

Ĥ ′ = Ĥ − ω · Ĵ − λ · B̂, (3.8)

where λ are three Lagrange multipliers, and the rotational frequencies ω are determined

from the angular-momentum condition:

J = 〈Φ|Ĵ |Φ〉 . (3.9)

Kerman and Onishi proved that the Lagrange multipliers corresponding to linear constraints

depend on angular momenta, rotational frequencies, and quadrupole moments [120]. This

relation, referred to as the Kerman-Onishi condition in the following, is given by

λk =
(ω × J)k
Di −Dj

(i, j, k cyclic), (3.10)

where Di = 〈Φ|D̂i|Φ〉 and D̂i ≡ Q̂ii. Consequently, nonzero values of λ imply that ω and

J are not parallel.

The Kerman-Onishi condition can also be written as:

−λ1x2x3 = +
ω2j3 − ω3j2√

3
6 < 〈Q22〉+ 1

2 〈Q20〉
=Q2−1 ≡ −L′2−1=Q2−1, (3.11a)

−λ2x1x3 = − ω3j1 − ω1j3

−
√

3
6 < 〈Q22〉+ 1

2 〈Q20〉
<Q21 ≡ −L′21<Q21, (3.11b)

−λ3x1x2 = −ω1j2 − ω2j1
2< 〈Q22〉

=Q2−2 ≡ −L′2−2=Q2−2. (3.11c)

In our calculations, we only allow the rotational axis to be tilted from the x2 axis to
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the x1-x2 plane. In this case, only one of the three constrains, −L2−2=Q2−2, is active.

The other two constraints, 〈=Q2−1〉 = 0 and 〈<Q21〉, are automatically met by enforcing

x3-T -simplex symmetry [123].

3.5 Project A: Triaxial rotation in the A ≈ 110 region

All the calculations for this project were performed with hfodd (version 2.49t) [103], and

the wave functions were expanded in 800 spherical harmonic oscillator (HO) basis states with

an oscillator frequency of ~ω = 49.2 MeV/A1/3. We have tested that such a basis provides

a very reasonable precision for the observables studied.

In the particle-hole channel, we employed the global EDF UNEDF0 [78]. In the pairing

channel, before the band crossing [18,32], we took the zero-range density-dependent pairing

force (2.18) with the Lipkin-Nogami correction for particle number fluctuations. The original

pairing strengths were (V ν0 , V
π
0 ) = (−170.374,−199.202) MeV fm3, with a cutoff energy

in the quasiparticle (q.p.) spectrum of Ecut = 60 MeV. In the present calculation, the

strengths of the pairing force for neutrons and protons were increased by 5% to produce the

kinematic moment of inertia of the g.s. band of 106Mo. As discussed below, the potential

energy surfaces (PES) are not sensitive to such a variation of pairing strengths. Beyond the

band crossing, pairing was neglected in our calculation as the stating pairing correlations

are reduced by angular momentum alignment; this is known as the Coriolis anti-pairing

effect [124].

In multidimensional potential energy surface calculations, constraints are imposed on the

expectation values of multiple moments. We used the augmented Lagrangian method [125]

to perform the constrained iterations. The total Routhian calculations were computed within
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the PAC approach [19].

3.5.1 Ground-state potential energy surfaces
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Figure 3.1: PES in the (Q20, Q22) plane in cranked HFB+UNEDF0 for 106Mo and 108Mo.
Left: standard pairing strengths. Right: pairing strengths increased by 5%, see text. The
difference between contour lines is 0.5 MeV.

Table 3.1: Bohr quadrupole deformation parameters β2 and γ calculated in HFB + UNEDF0
for the ground states of 106,108Mo and 108,110,112Ru.

106Mo 108Mo 108Ru 110Ru 112Ru
β2 0.19 0.18 0.16 0.16 0.15
γ 16◦ 18◦ 24◦ 25◦ 24◦

We start the exploration of shape deformation with HFB calculations of g.s. potential

energy surfaces for 106,108Mo and 108,110,112Ru. The results are shown in Fig. 3.1 and

3.2, respectively. In both figures, the left panels represent the results with the original

pairing strengths, while the right panels show the results with increased pairing strengths.

Triaxial deformed ground states are predicted in all cases. It turns out that a 5% change

in the pairing strengths does not practically affect the PESs, causing only a slight increase
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Figure 3.2: Similar to Fig. 3.1, but for 108Ru, 110Ru, and 112Ru.

in softness. In particular, the triaxial minima appearing at (Q20, Q22) ≈ (8.0-9.5, 2.0-3.0) b

are hardly affected by pairing. The corresponding g.s. quadrupole deformations (β2, γ) are

displayed in Table. 3.1. For 106,108Mo, we predicted the triaxial g.s. minima at (β2, γ) ≈

(0.19, 17◦). Similar results were obtained in the macroscopic-microscopic calculations of

Refs. [33,117,126] and HFB+D1S calculations [36]. For 108,110,112Ru, we also predict triaxial

g.s. minima; this is consistent with Refs. [33, 127] and HF+SIII calculations of Ref. [109].

Triaxial g.s. shapes for 108,110Ru were also obtained in the survey [117] but 112Ru was

calculated to be axial.
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Figure 3.3: One-q.p. Routhian diagram for 106Mo (left) and 112Ru (right) obtained with
cranked HFB+UNEDF0. The parity π and signature r (defined as the eigenvalue of R̂y =

exp (−iπĴy)) of individual levels are indicated in the following way: π = +, r = +i – solid
line; π = +, r = −i – dotted line; π = −, r = +i – dot-dashed line; π = −, r = −i – dashed
line. The thin line indicates the Fermi energy.

3.5.2 Rotational properties

The angular momentum alignment pattern of Mo and Ru nuclei is governed by the νh11/2

and πg9/2 high-j q.p. excitations, which give rise to strong shape polarization effects [33].

Figure 3.3 shows self-consistent cranked HFB+UNEDF0 1-q.p. Routhian diagrams versus

rotational frequency for 106Mo and 112Ru, respectively. In both cases, the alignment of

ν(h11/2)2 and π(g9/2)2 pairs occurs at similar rotational frequencies of ~ω ≈ 0.3 MeV.

At higher rotational frequencies, a transition is expected from the g.s. band configuration

to aligned ν(h11/2)2 and π(g9/2)2 2-q.p. bands, and then to a 4-q.p. ν(h11/2)2π(g9/2)2

band. These two consecutive crossings are difficult to follow in cranked HFB calculations, as

this would require a diabatic-configuration extension [21, 32, 128] of the current framework.

Such an extension is highly nontrivial in cranked HFB as the self-consistent mean-fields

associated with aligned configurations are expected to differ significantly from those of the g.s.
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band [33]. Moreover, pairing correlations in the aligned bands are quenched and this causes

numerical instabilities around the band crossing. Therefore, to provide interpretation of the

transition quadrupole moments at higher angular momenta, we carry out cranked Skyrme

HF calculations without pairing at ~ω > 0.3 MeV. In this case, diabatic configurations can

be defined by the number of single-particle Routhians occupied in the four parity-signature

blocks [100]. Specifically, each neutron and proton configuration is defined by four occupation

numbers [N++, N+−, N−+, N−−] representing the number of particlesNπ,r occupying single-

particle states of given π and r. The lowest total Routhian with π = + and r = 1 is associated

with the yrast configuration.

0

15

30

10

20

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

106Mo

(a)

(b)

an
gu

la
r m

om
en

tu
m

108Ru

(c)

(MeV)

112Ru

CHFB
CHF
EXP

Figure 3.4: Angular momentum alignment for 106Mo and 108,112Ru. Cranked HFB (~ω < 0.3
MeV) and cranked HF (~ω > 0.3 MeV) calculations are compared to experiment [2–4]

The angular momentum alignment (total angular momentum as a function of rotational

frequency) is shown in Fig. 3.4 for 106Mo, 108Ru, and 112Ru. Below the predicted band

crossing at ~ω ≈ 0.3 MeV, our calculations reproduce experiment well. (Note, however, that

our pairing strengths were adjusted to match the kinematic moment of inertia of 106Mo.)
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The first band crossing, associated with the alignment of the h11/2 neutron pair, is seen in

108,112Ru data slightly below ~ω = 0.4 MeV, and is significantly delayed in 106Mo. The pre-

dicted aligned configuration above the band crossing has a fairly different shape as compared

to that of the g.s. band, and it is difficult to follow the g.s. band at ~ω > 0.3 MeV.
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Figure 3.5: Summary of equilibrium deformations of the lowest π = +, r = 1
bands in 106,108Mo calculated with cranked HFB+UNEDF0 (ground band) and cranked
HF+UNEDF0 (aligned bands). The rotational frequency is varied from zero to ~ω =
0.6 MeV. The corresponding range of angular momentum is indicated. The aligned bands
are classified according to the number of occupied high-N intruder levels (N = 5 and 4 for
neutrons and protons, respectively).

To investigate the evolution of nuclear shapes with rotation, we compute the equilib-

rium β2 and γ deformations for low-lying π = +, r = 1 bands in 106,108Mo (Fig. 3.5) and
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108,110,112Ru (Fig. 3.6). In all cases considered, the triaxial paired g.s. band undergoes small

centrifugal stretching in the direction of β2. For instance, in the case of 108Ru, β2 increases

from the value of 0.15 at ~ω = 0 to 0.17 at ~ω = 0.3 MeV.

At higher spins (10 ≤ I ≤ 36), when pairing is neglected in our calculations, it is useful

to label many-body configurations by the number of occupied intruder levels, i.e., Nosc = 4

protons (primarily g9/2) and Nosc = 5 neutrons (primarily h11/2). For instance, the aligned

configuration π(9, 9, 12, 12)⊗ ν(17, 17, 15, 15) in 106Mo (shown by circles in Fig. 3.5(a)) can

be denoted as π44ν54, and the same label applies to the π(9, 9, 12, 12)⊗ ν(18, 18, 15, 15) in

108Mo (shown by up-triangles in Fig. 3.5(b)).

The quadrupole deformations β2 of aligned bands are predicted to be in the range of

0.12 ≤ β2 ≤ 0.16, which represents a reduction as compared to the shapes of paired

ground-state bands. The aligned bands remain triaxial with γ values around −30◦ up to

~ω = 0.6 MeV. This finding is consistent with earlier results [33] which employed a cranked

macroscopic-microscopic approach. At the highest rotational frequencies considered, our

calculations predict the appearance of aligned triaxial configurations with γ > 0, which

eventually terminate at oblate shapes (γ ≈ 60◦), see, e.g., Fig. 3.5(b).

To study the stability of different triaxial minima at high spins, we analyze related

diabatic total Routhians in the (Q20, Q22) plane. In Fig. 3.7 we show the total Routhian

surfaces at ~ω = 0.5 MeV for the selected low-lying aligned configurations in 106Mo discussed

in Fig. 3.5(a). For all those configurations, the collective triaxial minimum with γ between

−30◦ and −15◦ appears lowest in energy. For the configuration π44ν54 shown in Fig. 3.7(a),

we also predict a noncollective oblate state with I = 34 that represents a termination point

of the γ > 0 band.

To eliminate spurious minima that are unstable with respect to the angular momentum
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Figure 3.7: Diabatic total Routhian surfaces for 106Mo at ~ω = 0.5 MeV calculated with
CHF+UNEDF0 for the following configurations: (a) π(9, 9, 12, 12)⊗ν(17, 17, 15, 15) (π44ν54

in Fig. 3.5(a)); (b) π(10, 10, 11, 11) ⊗ ν(17, 17, 15, 15) (π46ν54); and (c) π(10, 10, 11, 11) ⊗
ν(16, 16, 16, 16) (π46ν56).

orientation, we also investigate the dependence of the Routhians on the angular momentum

tilting angle θ with respect to the axis of rotation (y-axis). To this end, we used the TAC

formalism of Refs. [104,121]. The calculations were performed for the aligned bands in 106Mo.

At ~ω < 0.5 MeV, the total Routhians of triaxial (γ < 0) configurations π44ν54, π45ν55,

and π46ν54 of Fig. 3.5(a) show a minimum at θ = 0◦. At ~ω ≈ 0.5 MeV, the Routhians

become very soft in θ, indicating a large-amplitude collective motion in this direction. This

instability is not present for the (π = −, r = 1) configuration π(9, 9, 12, 12)⊗ν(18, 17, 15, 14)

(π44ν55), which shows a pronounced minimum at θ = 90◦ associated with γ > 0. This result

is consistent with the deformation-driving effect of aligned h11/2 neutrons orbitals discussed

in Ref. [33].
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The transition quadrupole moments along the yrast band in 106,108Mo and 108,110,112Ru

are shown in Fig. 3.8 as a function of rotational frequency. At low rotational frequencies

~ω < 0.3 MeV, there is a gradual increase of Qt with ω due to the centrifugal stretching effect

seen in Figs. 3.5 and 3.6. As discussed earlier, at higher frequencies cranking calculations

are performed without pairing. While this approximation seriously affects the predicted

angular momentum alignment shown in Fig. 3.4, the equilibrium shapes obtained in the

cranked HF method are reasonable approximations to those obtained in the full cranked

HFB framework [129,130], and reproduce experimental Qt-values for aligned configurations

[131,132]. As seen in Fig. 3.8, the predicted transition quadrupole moments in aligned bands
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are slightly reduced with respect to the low-spin region due to the deformation reduction

associated with the aligned νh11/2 and πg9/2 pairs. This reduction is generally consistent

with experiment, except perhaps for 110Ru, where theory overestimates the measured Qt

values above ~ω = 0.3 MeV.

To further illustrate the importance of the γ degree of freedom in the description of the

band structures in the Mo and Ru isotopes, we have also carried out triaxial-projected-shell-

model calculations for 106Mo with a range of γ values. The obtained results, carried out by

my collaborators, paint the same picture as cranked HFB and HF calculations, and strongly

favor the triaxial interpretation [29].

3.6 Project B: Description of triaxial strongly deformed

bands in 160Yb

In the previous section, TAC calculations have been performed for the aligned bands in

106Mo, but no details of this procedure were provided. In this section, to explain the experi-

mentally observed TSD bands in 160Yb [133] and to illustrate the Kerman-Onishi condition,

TAC calculations are performed with the cranked HF approach.

3.6.1 Tilted-axis-cranking calculations for 160Yb

The TAC calculations were performed by using the symmetry-unrestricted solver hfodd

(version 2.49t). To be consistent with the previous work, we used the Skyrme EDF SkM∗ [86]

and the wave function was expanded in 1000 deformed HO basis states with frequencies of

~Ωx = ~Ωy = 10.080 MeV (up to Nx = Ny = 15 HO quanta) and ~Ωz = 7.418 MeV (up to
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Nz = 20 HO quanta).

Table 3.2: The configurations in 160Yb studied in this work. Each configuration is described
by the numbers of occupied states in the four parity-signature (π, r) blocks, in the convention
of Ref. [1].

Label minimum Configuration parity
A TSD1 ν[23, 23, 22, 22]⊗ π[16, 18, 18, 18] +
B TSD1 ν[23, 24, 21, 22]⊗ π[16, 18, 18, 18] −
C TSD1 ν[23, 24, 21, 22]⊗ π[18, 18, 17, 17] −
D TSD3 ν[23, 23, 22, 22]⊗ π[18, 18, 17, 17] +
E TSD3 ν[23, 23, 22, 22]⊗ π[17, 17, 18, 18] +

For 160Yb, our calculations show that two competing PAC minima with similar values

of β2 and |γ| but opposite values of γ appear, which indicates unstable PAC solutions and

thus the possible appearance of rotation along an axis which does not coincide with the

PA. Therefore, before the TAC calculations, we first perform extensive PAC calculations so

as to determine deformations of various minima. Similar to the PAC calculations in 158Er

[134], we found that the configurations generally have three typical deformations, namely,

(Qt, γ) ∼ (9 eb, 9◦-14◦) (TSD1), (Qt, γ) ∼ (10.8-12.2 eb,−10◦) (TSD2), and (Qt, γ) ∼

(10.0-10.5 eb, 13◦) (TSD3). Ranges of deformations indicate shape changes with rotational

frequency.

Figure 3.9 shows the total Routhians of five configurations in 160Yb calculated with

Skyrme HF as functions of the tilted angle, θ, defined as the angle between the x2-axis and

the rotational axis in the x1-x2 plane. The corresponding configurations and parities are

given in Table 3.2. At θ = 90◦, the Q22 value changes sign and TSD1 becomes TSD2. It

can be seen that, at ω = 0.5 MeV, the Routhians of the bands A and B are very soft against

θ. For band A, even a minimum with θ 6= 0◦ or 90◦ develops. In such a situation, one

may expect large-amplitude collective motion with a rotational axis that easily changes its

direction. As the rotational frequency increases, the energy of the TSD2 bands increases
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Figure 3.9: Total Routhians in 160Yb calculated within the SHF method as functions of the
tilting angle θ for the five TSD configurations listed in Table 3.2. Solid and dashed lines
mark configurations with positive and negative parity, respectively.

rapidly and these configurations become unphysical saddle points. At the same time, for

the frequencies considered, the energies of the TSD3 bands are close to or even below the

energies of the TSD1 and TSD2 bands.
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3.7 Summary

In this chapter, we applied nuclear DFT to study triaxial shapes in the medium-heavy nuclei

106,108Mo and 108,110,112Ru, and TSD bands in 160Yb.

Triaxial g.s. deformations were predicted for 106,108Mo and 108,110,112Ru. Observed high-

spin behavior of these nuclei is also consistent with triaxial rotation. However, the predicted

triaxial ground state minima are fairly shallow, and this is perhaps why in some calculations,

e.g., the cranked relativistic Hartree-Bogoliubov model of Ref. [6], axial configurations may

be slightly favored. Particularly, in our work [29], the triaxial projected shell model was also

employed to explain the observed band structures by assuming stable triaxial shapes, which

has given consistent results with our nuclear DFT calculations.

In addition, with the Kerman-Onishi condition assumed, we employed the Skyrme HF

method to perform TAC calculations for 160Yb. The results explained the nature of the

TSD1 and TSD2 bands in 160Yb and predicted large-amplitude collective motion, which

might appear at rotational frequency ω ≈ 0.5 MeV.

From mass distributions alone, multipole moments only tell us about geometric shapes

of nuclei, leaving out detailed information on their shell structure. In the next chapter, we

shall introduce the nucleon localization function, which also provides specific information on

s.p. orbits.
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Chapter 4

Nucleon Localization

4.1 Introduction

The degree of clustering in nuclei is difficult to assess quantitatively in DFT as the single

particle wave functions are spread throughout the nuclear volume; hence, the resulting nu-

cleonic distributions are rather crude indicators of cluster structures as their behavior in the

nuclear interior is fairly uniform. Therefore, in this chapter, we utilize a different measure

called spatial localization, which is a more selective signature of clustering and cluster shell

structure. Spatial localization, originally introduced for the identification of localized elec-

tronic groups in atomic and molecular systems [22, 135–139], has recently been applied to

characterize clusters in light nuclei [23]. This chapter is organized as follows: Sec. 4.2 gives

an introduction to the spatial localization formalism, then two related projects are discussed

in Sec. 4.3 and 4.4.

In the first project, to illustrate the basic concepts of nucleon localization, we employ

the deformed harmonic oscillator (DHO) model and nuclear DFT to study cluster structures

in deformed light nuclei. Then we apply this measure to track the development of fission

fragments in heavy nuclei (232Th, 264Fm and 240Pu) with their characteristic oscillation

patterns [24,31].

Spontaneous fission (SF) is a type of slow but large-amplitude collective motion, and

only happens in heavy nuclei, which makes nuclear DFT an excellent tool to describe it.
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As reported in previous work [7, 140–144], the fission pathway from the ground states of

compound nuclei to separated fragments can be described by several collective coordinates

(usually defined in terms of multipole moments), and may also be influenced by pairing and

excitation energy. Therefore, determining the multi-dimensional PES is usually the first

step of the calculation. Furthermore, since SF is a quantum process, all pathways should be

considered theoretically with different probabilities [8]. These two considerations make SF

calculations computationally expensive.

In the second project, we employ nuclear DFT to calculate both the density distribution

and spatial localization distribution on the outer-turning line [140] and the scission line where

fission happens for 240Pu. With the structure information obtained via spatial localization,

fission fragments can be identified before scission.

4.2 Spatial localization

The spatial localization measure was originally introduced in atomic and molecular physics

to characterize chemical bonds in electronic systems. It also turned out to be useful in

visualizing cluster structures in light nuclei [23]. The localization measure can be derived

by considering the conditional probabilities of finding a nucleon within a distance δ from

a given nucleon at r with the same spin σ (↑ or ↓) and isospin q (n or p). As discussed

in [22,23], the expansion of this probability with respect to δ can be written as

Rqσ(r, δ) ≈ 1

3

(
τqσ −

1

4

|∇ρqσ|2
ρqσ

−
j2
qσ

ρqσ

)
δ2 +O(δ3), (4.1)

41



where ρqσ, τqσ, jqσ, and ∇ρqσ are the particle density, kinetic energy density, current

density, and density gradient, respectively. A detailed derivation can be found in Appendix

B. The densities have been defined in Sec. 2.2.1. By using the canonical basis [145], they

can be re-expressed through the canonical HFB orbitals ψα(rσ):

ρqσ(r) =
∑
α∈q

v2
α|ψα(rσ)|2, (4.2a)

τqσ(r) =
∑
α∈q

v2
α|∇ψα(rσ)|2, (4.2b)

jqσ(r) =
∑
α∈q

v2
αIm[ψ∗α(rσ)∇ψα(rσ)], (4.2c)

∇ρqσ(r) = 2
∑
α∈q

v2
αRe[ψ∗α(rσ)∇ψα(rσ)], (4.2d)

with v2
α being the canonical occupation probability. Thus, the expression in the parentheses

of Eq. (B.6) can serve as a localization measure. Unfortunately, this expression is neither

dimensionless nor normalized. A natural choice for normalization is the Thomas-Fermi ki-

netic energy density τTF
qσ = 3

5(6π2)2/3ρ
5/3
qσ . Considering that the spatial localization and Rqσ

are in an inverse relationship, a dimensionless and normalized expression for the localization

measure can be written as

Cqσ(r) =

[
1 +

(
τqσρqσ − 1

4 |∇ρqσ|2 − j2
qσ

ρqστTF
qσ

)2
]−1

. (4.3)

In our work, time reversal symmetry is conserved and jqσ vanishes.

A value of C close to one indicates that the probability of finding two nucleons with the

same spin and isospin at the same spatial location is very low. Thus the nucleon’s localization

is large at that point. In particular, nucleons making up the alpha particle are perfectly

localized [23]. Another interesting case is C = 1/2, which corresponds to a homogeneous
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Fermi gas as found in nuclear matter. When applied to many-electron systems, the quantity

C is referred to as the electron localization function, or ELF. In nuclear applications, the

measure of localization (4.3) shall thus be called the nucleon localization function (NLF).

The above definition of the NLF works well in regions with non-zero nucleonic density.

When the local densities become very small in regions outside the range of the nuclear mean

field, numerical instabilities can appear. On the other hand, when the particle density is

close to zero, localization is no longer a meaningful quantity. Consequently, for finite nuclei,

we multiply the NLF by a normalized particle density C(r)→ C(r)ρqσ(r)/[max(ρqσ(r))].

4.3 Project C: Nucleon localization in nuclei

In this project, we employed the axial DHO model and nuclear DFT. For the light nuclei

discussed in Sec. 4.3.2, where pairing can be neglected, we solved the constrained HF problem

with the functional UNEDF1-HFB [91] (except for the discussion in octupole deformed 20Ne.

For details, see Sec. 4.3.2). In the discussion of fissioning heavy nuclei in Sec. 4.3.3,

pairing correlations are important. Therein, we solved the constrained HFB problem with

the UNEDF1 functional optimized for fission [90] in the presence of pairing treated by means

of the Lipkin-Nogami approximation as in Ref. [146]. Both hfbtho [96] and hfodd [103]

were used to solve the HF and HFB equations.

4.3.1 NLFs within the axial harmonic oscillator model

Since the average potential in light nuclei can be fairly well approximated by that of a

deformed HO [147–149], many properties of these systems can be characterized in terms

of the HO shell structure. Quantum mechanically, the unusual stability of cluster states
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in light nuclei can be attributed to strong shell effects that are present in deformed single

particle orbitals. Indeed, in the deformed HO model the strongest level degeneracy occurs

when the ratio of oscillator frequencies is a rational number; this results in the appearance

of supershells [70, 148, 149]. Consequently, the deformed HO model can serve as a rough

guide to describe cluster states [61, 64, 70, 150]. To this end, we first study the NLFs using

the wave functions of the axial HO with frequencies ω⊥ and ωz. For the integer values

of η ≡ ω⊥/ωz (prolate shapes), a supershell structure appears that is associated with the

η-fold SU(3) dynamical symmetry of the rational HO [70]. For instance, for η = 2, the

superdeformed magic numbers are 2, 4, 10, 16, . . . , etc. For oblate shapes, the degeneracy

pattern of the rational HO is different [151]. For instance for η = 0.9 the magic numbers

are 2, 6, 8, 14, . . . [149,151]. In the examples below for N = Z nuclei, we only show densities

and NLFs for one combination of spin and isospin as time-reversal and isospin symmetries

are conserved.

In Fig. 4.1 we show particle densities and NLFs for superdeformed configurations in 8Be

and 20Ne with η = 2, and for an oblate configuration in 12C with η = 0.9. All of these

configurations correspond to closed shells of the deformed HO. In the case of 8Be, both the

density and the NLF reveal two clear centers. The NLF values at these centers are close to

one, which means that the nucleons are highly localized, implying the presence of α clusters.

For 20Ne, the cluster structure is difficult to see in the particle density plot. However, the

NLF clearly demonstrates the presence of two α clusters at the tips and a ring structure

around z = 0 associated with an oblate-deformed 12C nucleus. Figures 4.1(e) and (f) indeed

show that the η = 0.9 configuration in 12C exhibits a very similar localization pattern, except

that the localization level is higher. This is easy to understand as the wave functions of α

clusters in 20Ne have a non-zero overlap with the ring structure of 12C, and this decreases
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Figure 4.1: Left: particle density ρn↑ (in nucleons/fm3) for prolate configurations in 8Be and
20Ne with η = 2, and for an oblate configuration in 12C with η = 0.9. Right: corresponding
masked NLFs as described in Sec. 4.2. White dotted lines are the contour lines C = 0.9 of
the original definition (4.3).

the level of localization.

In Fig. 4.2, we show three more examples of elongated configurations in 36Ar, 16O and

24Mg. In the first row, we show a hyperdeformed (η = 3) configuration in 36Ar. While the

particle density hardly shows clustering, the localization shows large values, especially at

the tips of the nucleus. The structure in between corresponds to a deformed 28Si and also

exhibits cluster structures at z = 0 and z ≈ ±2 fm. The white dotted line represents the

C = 0.9 contour of the original localization measure. In the second and third rows, in order
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Figure 4.2: Similar to Fig. 4.1, but for 36Ar, 16O and 24Mg.

to simulate α-chain configurations, we choose η according to the α particle content. While a

separation into α particles is difficult to see in the particle density plot, especially for 24Mg,

the NLF clearly reveals four maxima for 16O and six maxima for 24Mg, with localizations

close to one. This means that the nucleons are very localized for each spin/isospin component,

implying the presence of α-chain configuration.

4.3.2 NLFs in light nuclei

In order to compare the deformed HO results with a realistic nuclear model, we carry out

nuclear DFT calculations for 8Be, 20Ne and 36Ar. For light nuclei with N = Z, results for
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neutrons and protons are very similar as the Coulomb contribution is small. Therefore, we

only consider neutron densities and spin-up NLFs. Figures 4.3, 4.4 and 4.5 show our results

of constrained HF calculations with UNEDF1-HFB assuming good parity.
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Figure 4.3: Left: neutron density ρn (in nucleons/fm3) for the HF ground-state of 8Be com-
puted with the functional UNEDF1-HFB. Right: corresponding masked NLFs as described
in Sec. 4.2. White dotted lines are the contour lines C = 0.9 of the original definition (4.3).

Figure 4.3 depicts ρn and Cn↑ for the ground-state configuration of 8Be. Both quantities

are very similar to the HO results of Fig. 4.1(a) and (b), again revealing the presence of two

α clusters.

Figure 4.4 shows HF results for 20Ne for both its axially deformed configuration with

β2 ≈ 0.38 and a hyperdeformed minimum with β2 ≈ 0.9. The values of ρn and Cn↑ at

the first local minimum are similar to the HO results of Figs. 4.1(c) and (d). Again, the

particle density does not show any pronounced cluster structure, while the spatial localization

shows the presence of the α-12C-α structure. As the quadrupole deformation increases, the

localization of the three clusters becomes more pronounced.

Our results for 8Be and 20Ne compare well with the HF-SkI3 calculations of Ref. [23]. In

both cases, unmasked NLFs exhibit numerical artifacts in the low-density region, because

the numerator and denominator in Eq. (4.3) are both close to zero.

Figure 4.5 shows the HF energy of 36Ar as a function of the quadrupole deformation
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Figure 4.4: (a) Total HF energy of 20Ne versus quadrupole deformation parameter β2. The
predicted lowest minimum is normalized to 0. The neutron densities (in nucleons/fm3) at the
two local minima I and II are shown in panels (b) and (d), respectively, and the corresponding
NLFs are plotted in panels (c) and (e).

β2. The three local minima are predicted at β2 ≈ 0.1, 0.5, and 0.8. The corresponding

neutron densities and NLFs are also displayed in Fig. 4.5 (clustering in 36Ar has also been

studied in the DFT calculations of Ref. [68]). The weakly-deformed ground state at β2 ≈ 0.1

does not show any structure in the density. Its NLF exhibits a maximum in the center and

an enhancement at the tips. This distribution constitutes a unique fingerprint of the shell

structure of 36Ar that is clearly missing in the density plot. Configuration II is less deformed

than that calculated with the HO in Fig. 4.2. However, its NLF is similar. In particular, the
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Figure 4.5: Similar to Fig. 4.4, but for 36Ar.

localization enhancement at the tips reveals the presence of alpha clustering. The central

structure shows two rings of the enhanced surface localization. Unlike shape II, shape III

has a more uniform NLF, with the localization peaked around the nuclear surface where the

contribution from one specific single-particle orbital is likely to dominate.
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Figure 4.6: Similar to Fig. 4.3 but for the reflection-asymmetric ground state of 20Ne at
β2 = 0.35 and β3 = 0.57.

If parity is not constrained in HF calculations, the ground state of 20Ne is expected
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to be reflection-asymmetric [152]. In Refs. [153–155], the Kπ = 0− configuration in 20Ne

is predicted to have a cluster-like structure with a large octupole deformation, while the

Kπ = 0+ ground state is situated between cluster-like and shell-like configurations. To

illustrate this special case, we use hfodd to perform a constrained HFB calculation for

20Ne at the octupole deformation β3 ≈ 0.57 [155], which is benefical for obtaining the stable

solution, while the pairing strengths chosen are very small. The octupole deformation β3

is defined through the corresponding axial octupole moment Q30: β3 = 4π
5

√
3
5

Q30

A〈r2〉3/2
. As

seen in Fig. 4.6, the intrinsic configuration of 20Ne has a rather compact shape. A clear

dip in the NLF at the center manifests a region where all wave functions overlap. A slight

enhancement of the spatial localization near the tip is visible. While the ground-state of

20Ne shows a faint trace of an α-16O structure, the localization is rather low; hence, the

quasimolecular picture does not apply for the UNEDF1-HFB Skyrme functional used.

4.3.3 NLFs in heavy nuclei

Based on the examples shown in the last section, we conclude that the NLF is an excellent

tool for visualizing cluster structures in light nuclei. In this section, we will apply this tool

to monitor the development and evolution of fission fragments in 232Th, 264Fm and 240Pu.

Since the Coulomb interaction is significant in heavy nuclei, the isospin symmetry is broken.

Therefore, both neutron and proton results will be discussed here.

Figure 4.7 shows the potential energy curves of 232Th and 240Pu along the most probable

fission pathway predicted, respectively, in Refs. [7] and [8]. The calculations are performed

with the UNEDF1 functional. Both curves show secondary minima associated with superde-

formed fission isomers. For 232Th, a pronounced softness is observed at large quadrupole

moments Q20 ≈ 150 − 200 b. In this region of collective space, a hyperdeformed third
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Figure 4.7: The potential energy curves of 232Th and 240Pu calculated with UNEDF1 along
the fission pathways [7, 8]. The configurations further discussed in Figs. 4.8 and 4.12 are

marked by symbols. Their quadrupole and octupole moments, Q20(b) and Q30 (b3/2) re-
spectively, are indicated.

minimum is predicted by some Skyrme functionals [7]. In the next step, we consider five

configurations along the fission pathway to perform detailed localization analysis.

Figure 4.8 shows neutron and proton densities and NLFs for 232Th along the fission

pathway. The first column corresponds to the ground-state configuration where the densities

do not show obvious internal structures. However, the neutron NLF shows three concentric

circles and the proton NLF exhibits two maxima and an enhancement at the surface. The

second column corresponds to the fission isomer. Here two center distributions begin to

form in both NLFs. As discussed in [7], the distributions shown in the third column can

be associated with a quasimolecular “third-minimum” configuration, in which one fragment

bears a strong resemblance to the doubly magic nucleus 132Sn. The fourth column represents

the configuration close to the scission point, where two well-developed fragments are present.
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Figure 4.8: Nucleonic densities (in nucleons/fm3) and spatial localizations for 232Th ob-
tained from HFB calculations with UNEDF1 for five configurations along the fission pathway
marked in Fig. 4.7.

As seen in the last column, at larger elongations beyond scission, the nucleus breaks up into

two fragments, one spherical and another one strongly deformed.

To study the evolution of fission fragments, we performed HFB calculations for the pre-

sumed fission fragments 132Sn and 100Zr. The results are shown in Fig. 4.9.

The nucleus 132Sn is a doubly-magic system with a characteristic shell structure. Except

for a small depression at the center of proton density in Fig. 4.9(c)(left), the nucleonic

densities are almost constant in the interior. On the other hand, the NLFs show characteristic

patterns of concentric rings with enhanced localization, in which the neutron NLF exhibits
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Figure 4.9: Nucleonic densities (in nucleons/fm3) and spatial localizations for the ground
state of 132Sn (left) and 100Zr (right).

.

one additional maximum as compared to the proton NLF; this is due to the additional closed

neutron shell. As one can see, unlike in atomic systems [22], the total number of shells cannot

be directly read from the number of peaks in the NLF, because the radial distributions of

wave functions belonging to different nucleonic shells vary fairly smoothly and are poorly

separated in space. Nevertheless, each magic number leaves a strong and unique imprint on

the spatial localization.

For 100Zr , the calculation is performed at the prolate configuration with Q20 = 10 b,

which corresponds to the lighter fission fragment predicted in [7]. Again, while the particle

densities are almost constant in the interior, the neutron NLF shows two concentric rings

and the proton NLF exhibits two centers in the interior and one enhanced ring at the surface.

The characteristic patterns seen in the NLFs of fission fragments can be spotted during

the evolution of 232Th in Fig. 4.8. To show it more clearly, Fig. 4.10 displays the NLFs of

the three most elongated configurations of 232Th along the z-axis in Fig. 4.8 and compares

them to those of 132Sn and 100Zr. To avoid normalization problems we present NLFs given

by Eq. (4.3), i.e., without applying the density form factor. In Figs. 4.10 (a) and (b), neutron
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Figure 4.10: Neutron (left) and proton (right) NLF profiles for 232Th (blue thick line), 100Zr
(green line), and 132Sn (red line) along the z axis (r = 0). The first, second, and third
panels correspond to the configurations in the third, fourth and fifth columns of Fig. 4.8,
respectively.

and proton localizations at the center are around 0.5, which is close to the Fermi gas limit.

This is expected for a fairly heavy nucleus. In the exterior, the localizations of two developing

fragments match those of 100Zr and 132Sn fairly well. In panels (c) and (d), the NLFs of

232Th grow in the interior; this demonstrates that the nucleons become localized at the neck

region. Finally, in panels (e) and (f), the fission fragments are separated and their NLFs are

consistent with the localizations of 100Zr and 132Sn.

As another illustrative example, we show in Fig. 4.11 the distributions computed for
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Figure 4.11: Similar to Fig. 4.8 but for the configurations of 264Fm. The quadrupole moments
of the configurations are denoted on top of each column.

264Fm, in which symmetric fission was predicted. As the constraining quadrupole moment

Q20 gets larger, the particle densities become increasingly elongated. A neck develops at

Q20 ≈ 145 b, and the scission point is reached at Q20 ≈ 265 b above which 264Fm splits

into two 132Sn fragments. By comparing to the results for 132Sn in Fig. 4.9, one can see the

gradual development of the 132Sn clusters within the fissioning nucleus.

Finally, let us consider the important case of 240Pu. Recently, a microscopic modeling

of mass and charge distributions in spontaneous fission of this nucleus was carried out in

Ref. [8]. To give an insight into the evolution of 240Pu along its fission pathway, in Fig. 4.12

we illustrate the NLFs of 240Pu. The transition to the reflection-asymmetric pathway begins

atQ20 ≈ 95 b. It is seen that two nascent fragments start developing at this configuration. At

larger elongations internal parity is broken and two fragments are formed with distinct shell

imprints in the corresponding NLFs. In the last column, the rings of enhanced localization
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Figure 4.12: Similar to Fig. 4.8 but for the configurations of 240Pu indicated in Fig. 4.7.

are almost closed, and the fragments are nearly separated. Three examples, 232Th, 264Fm

and 240Pu, show in a rather dramatic fashion that the NLFs can serve as excellent fingerprints

of both the formation and evolution of cluster structures in fissioning nuclei.

4.4 Project D: Identifying fission fragments

In the previous section, nucleon spatial localization was employed to describe the clustering

substructures in light and heavy nuclei successfully. In this project, it will be applied to

identify fission fragments in 240Pu.
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4.4.1 Fission fragment distribution

In a semi-classical approximation for spontaneous fission, the penetration probability from

the inner-turning point, A, to the outer-turning point, B, is given by

P = (1 + exp[2S(L)])−1, (4.4)

where S(L) is the least action integral calculated along the one-dimensional fission path L(s)

preselected in the multidimensional collective space:

S(L) =

∫ sB

sA

1

~
√

2Meff(s)(Veff(s)− E0)ds, (4.5)

where Veff(s) andMeff(s) are the effective potential energy and inertia along the fission path

L(s), respectively. Veff can be obtained by subtracting the vibrational zero-point energy

EZPE from the total HFB energy Etot. EZPE can be estimated by using the Gaussian

overlap approximation [156]. Integral limits sA and sB are the classical inner and outer

turning points, respectively, defined by Veff(s) = E0 on the two extremes of the fission path.

The collective ground state energy, E0, was assumed to be equal to 1 MeV. ds is the element

of length along L(s). The expression for Meff is [8, 157–159]

Meff(s) =
∑
ij

Mij
dqi
ds

dqj
ds
, (4.6)

where Mij are the components of the multi-dimensional collective inertia tensor, which

can be calculated by using the non-perturbative cranking approximation [160]. The qi are

collective variables.
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From outer-turning points to scission points, the time-dependent fission path can be

approximated by solving the dissipative Langevin equations [161,162]:

dpi
dt

= −pjpk
2

∂

∂xi
(M−1)jk −

∂V

∂xi
− ηij(M−1)jkpk + gijΓj(t),

dxi
dt

= (M−1)ijpj ,

(4.7)

where xi = qi/δqi is the dimensionless coordinate, δqi is the scaling parameter [141,160], pi

represents the momentum conjugate to xi, ηij is the dissipation tensor, gijΓi(t) is the random

(Langevin) force with Γj(t) being a time-dependent stochastic variable with a Gaussian

distribution, and gij is the random-force strength tensor. This project is based on the work

in [8], and use the same parameters defined therein.

4.4.2 Fragments identification for 240Pu
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Figure 4.13: Outer turning line (thick solid line) and scission line (dashed line) on the
potential energy surface of 240Pu. Symbols indicate the selected configurations for which
subsequent results are shown.
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Figure 4.14: One-dimensional plots of Cq↑ (solid lines) and ρq↑ (dashed lines) along the
symmetry axis for the configurations (a) and (b) of Fig. 4.13. The black lines are results for
the fragmented systems, while the green and red lines denote the results for fission fragments.

The outer turning line and scission line for 240Pu are shown in Fig. 4.13. The scission

line corresponds to the deformation where spatial nucleon densities of the fission fragments

are well separated. We first calculate the NLFs on this scission line. Corresponding one-

dimensional plots of Cqσ and ρqσ along the symmetry axis are shown in Fig. 4.14 for the two

configurations as indicated in Fig. 4.13 by (a) and (b). Evidently, both the Cqσ and ρqσ of the

fragmented systems are indistinguishable from those of the corresponding fission fragments

calculated separately. The oscillations in Cqσ uniquely determine the cluster structure of

fission fragments that are absent in the scalar particle density obtained with ρqσ. Therefore,

the NLF can be used as a more appropriate probe to identify the fission fragments.

The scenario changes appreciably at the outer turning line. We take configurations (1),

(5) and (11) as examples to illustrate this. Only at lower values of Q30 (configuration (1)

of Fig. 4.13), where the outer turning line is very close to the scission point, a well defined
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Figure 4.16: Same as Fig. 4.15, but for protons.

neck can be visualized from the nucleon density as shown in Fig. 4.15 and 4.16 for neutrons

and protons, respectively. However, it is premature to predict the fission fragments with

ρ at configurations (5) and (11). Next, we compute Cqσ for all three configurations. As

shown in Fig. 4.15 and 4.16, Cqσ calculated for each of the configurations shows remarkably
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oscillating patterns and reveals more structure information as compared to the densities of

the fissioning system.

In ongoing work, we will integrate over the outer parts of the density files for three con-

figurations to obtain the very nascent fragments. By comparing the localizations calculated

for the fragments with those for fissioning systems, the necks will be clearly defined.

4.5 Summary

In this work, we presented developments pertaining to the theoretical description of nucleonic

clustering in light and heavy nuclei using the concept of nucleon localization. Following a

schematic HO analysis, we carried out self-consistent DFT calculations for light N = Z

nuclei and heavy fissioning systems. We demonstrated that nucleon localization is a superb

indicator of clustering in light and heavy nuclei; the characteristic patterns of NLFs can serve

as fingerprints of the single-particle shell structure associated with cluster configurations.

In particular, the NLFs of 8Be,12C, 16O, 20Ne and 24Mg can serve as excellent indicators

of α clustering. Here, we found that the results of realistic HF calculations for NLFs are

not significantly different from the results of the deformed HO model. This result suggests

that the details of the EDF are perhaps not that important for the structure of cluster

configurations in light nuclei, as the geometric properties of s.p. orbits robustly follow the

HO description. While the characteristic oscillating patterns of the NLF magnify cluster

structures in light nuclei, shell effects of nascent fragments in fissioning nuclei also leave a

strong imprint on the localization. Our DFT analysis of fission evolution of 232Th, 264Fm

and 240Pu demonstrates that the fragments are formed fairly early in the evolution, and the

identification of these fragments before scission is very promising.
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We also evaluated the nucleon localization level of 240Pu along the outer-turning line.

For each considered configuration on the outer-turning line, a stochastic Langevin dynamics

simulation will be performed to find the average paths to the scission line. This will allow

us to identify fission fragments before scission.
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Chapter 5

Conclusion and Outlook

This dissertation focused on several applications of nuclear DFT to collective states in atomic

nuclei.

Two applications of nuclear DFT to nuclear rotation were presented. First, shape changes

with rotation in triaxial 106,108Mo and 108,110,112Ru were studied as well as angular momen-

tum alignment to rotational frequency. The computed transition quadrupole moments were

compared to experiment.

Second, for 160Yb with triaxial deformation at high spins, nuclear DFT was employed

to study strongly deformed bands through TAC calculations. The Kerman-Onishi condition

was used to constrain the nucleus to stay in the PA system. The results showed that, at

~ω ≈ 0.5 MeV, the soft Routhian curve with respect to the tilted angle is indicative of the

possible appearance of large-amplitude collective motion associated with the direction of

angular momentum vector; with increasing rotational frequency, one of the two competing

rotations (at tilted angle 0◦ and 90◦) became favored energetically and the other became

an unphysical saddle point. To further understand the possible large-amplitude collective

motion, methods beyond-mean-field, e.g. the generator coordinate method [18], must be

employed.

As shown in the third project, spatial localization proved to be an excellent indicator of

cluster structures and wave function correlations. A possible future research topic could be

the evaluation of nucleon localization in nuclei under rotation, which is expected to show
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configuration changes resulting from angular momentum alignment in the presence of broken

time reversal symmetry and the current term in the NLF.

In our last project, we employed spatial localization to identify fission fragments before

scission in 240Pu. The nucleon localizations at selected points on the outer-turning line and

scission line were computed. The degree of localization in fission fragments along the fission

pathway is closely related to the fragments’ shell structures. Therefore, the effectiveness of

identifying fission fragments with spatial localization is still under investigation.

In summary, this dissertation has shown that nuclear DFT can be successfully employed

to study collective and single-particle effects in nuclei. However, the applications are not

limited to those presented here. Other applications include the study of the zero-energy

Nambu-Goldstone mode [163, 164], neutrinoless double-beta decay with beyond-mean-field

DFT [165, 166] and nuclear pasta phases [30, 167] with time-dependent DFT, etc. The

experience has given us the confidence to explore these problems.
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monic oscillator basis (III) hfbtho v3.00: a new version of the program”, in prepa-

ration.

• Implemented the nucleon localization module in hfbtho.

• Provided the tested input and output for localization calculations.
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Appendix A

Hohenberg-Kohn theorems

Hohenberg-Kohn theorem I: There cannot be two external potentials, Uext,1 and Uext,2

(Uext,2 6= Uext,1+const) that give the same electron density. (i.e. given an external potential,

the density is uniquely determined.)

Proof I: This can be proven with reductio ad absurdum.

With two external potentials, the Hamiltonians can be written as:

Ĥ1 = T̂ + V̂ + Ûext,1, (A.1a)

Ĥ2 = T̂ + V̂ + Ûext,2. (A.1b)

By diagonalizing the Hamiltonians, the ground eigenstates are given as |Ψ1〉 and |Ψ2〉, re-

spectively, with ground eigenvalues E1 and E2.

Assuming that the ground state is non-degenerate and the same density, ρ(r), is given

by two external potentials, then,

E1 ≡ 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉

= E2 +

∫
dr[Uext,1(r)− Uext,2(r)]ρ(r),

(A.2)

E2 ≡ 〈Ψ2|Ĥ2|Ψ2〉 < 〈Ψ1|Ĥ2|Ψ1〉

= E1 −
∫
dr[Uext,1(r)− Uext,2(r)]ρ(r).

(A.3)
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Adding A.2 and A.3, we obtain

E1 + E2 < E2 + E1, (A.4)

which is a contradiction. Thus, the theorem has been proven.

For the degenerate case, the theorem should be slightly modified: there cannot be two

external potentials, Uext,1 and Uext,2 (Uext,2 6= Uext,1 + const) that give the same class of

electron densities. More details can be found in [168].

Hohenberg-Kohn theorem II: A universal functional for the energy E[ρ(r)] can be

defined in terms of the electron density, and is minimized when ρ(r) is the ground state

density.

Proof II: The energy of the interacting system can be written as:

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂ + V̂ + Ûext|Ψ〉 . (A.5)

Since the density is uniquely determined and we assume a non-degenerate ground state,

the ground state wave function is also uniquely determined. Thus, the energy in terms of

the wave function can be transformed into the functional of the density:

E[ρ(r)] = F [ρ(r)] +

∫
Uext(r)ρ(r)dr. (A.6)

The first term is a universal functional because the treatment of both the kinetic and potential

energies is universal over all the interacting systems.

When ρ(r) is ground state density, the ground state wave function is uniquely determined
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as |Ψg.s.〉, then

E[ρg.s.] = 〈Ψg.s.|Ĥ|Ψg.s.〉 < 〈Ψ2|Ĥ|Ψ2〉 = E[ρ2], (A.7)

where ρ2 is a different density from the ground state, and |Ψ2〉 is the corresponding wave

function. Therefore, the energy is minimized when ρ is the exact ground state density.
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Appendix B

Spatial Localization

The conditional probability of finding a nucleon at r1 when we know with certainty that

another nucleon with the same spin and isospin is at r is [23]

Rqσ(r, r1) = ρqσ(r1)− |ρqσσ(r, r1)|2
ρqσ(r)

. (B.1)

Since we are only interested in the localization part of this probability, it is sufficient to

consider the local short-range behavior of the conditional probability, which can be obtained

by performing a spherical averaging over a shell of radius δ about the reference point r. We

perform the Taylor expansion in the coordinate δ about the reference point r [169]:

Rqσ(r, r + δ) = eδ·∇1Rqσ(r, r1)|r1=r. (B.2)

The spherical average of the Taylor expansion is given as

〈eδ·∇1〉 =
1

4π

∫
eδ·∇1dΩ

=
sinh(δ∇1)

δ∇1

=1 +
1

3!
δ2∇2

1 +
1

5!
δ4∇4

1 +
1

7!
δ6∇6

1 + · · · .

(B.3)

Since

Rqσ(r, r1)|r1=r = 0, (B.4)
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and

∇2
1
|ρσ(r, r1)|2
ρσ(r)

|r1=r = ∇2ρσ(r)− 2τσ(r) +
1

2

|∇ρσ(r)|2
ρσ(r)

+ 2j2
σ(r), (B.5)

one can obtain

Rqσ(r, δ) ≈ 1

3

(
τqσ −

1

4

|∇ρqσ|2
ρqσ

−
j2
qσ

ρqσ

)
δ2 +O(δ3). (B.6)

If this conditional probability is small, it means that one nucleon with fixed spin and

isospin is highly localized in the space. Therefore, the spatial localization has an inverse

relation with the probability. To make the localization normalized and dimensionless, the

spatial localization can be defined as

Cqσ(r) =

[
1 +

(
τqσρqσ − 1

4 |∇ρqσ|2 − j2
qσ

ρqστTF
qσ

)2
]−1

. (B.7)

Proof of (B.5):

∇2
1|ρσ(r, r1)|2|r1=r

=∇1[∇1ρσ(r, r1)ρ∗σ(r, r1) + ρσ(r, r1)∇1ρ
∗
σ(r, r1)]|r1=r

=[∇2
1ρσ(r, r1)ρ∗σ(r, r1) + 2∇1ρσ(r, r1)∇1ρ

∗
σ(r, r1) + ρσ(r, r1)∇2

1ρ
∗
σ(r, r1)]|r1=r,

(B.8)
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where, 1st term + 3rd term:

= [∇2
1ρσ(r, r1)ρ∗σ(r) + ρσ(r)∇2

1ρ
∗
σ(r, r1)]|r1=r

= ρσ(r)[∇2
1ρσ(r, r1) +∇2

1ρ
∗
σ(r, r1)]|r1=r

= ρσ(r)[∇2
1ρσ(r, r1) +∇2ρσ(r, r1)]|r1=r

= ρσ(r)(∇2
1 +∇2)ρσ(r, r1)|r1=r

= ρσ(r)[(∇1 +∇)2 − 2∇1 · ∇]ρσ(r, r1)|r1=r

= ρσ(r)[∇2ρσ(r)− 2τσ(r)]],

(B.9)

and, 2nd term:

= 2∇1ρσ(r, r1)∇1ρσ(r1, r)|r1=r

=
1

2
[∇1ρσ(r, r1) +∇1ρσ(r1, r)]2 − 1

2
[∇1ρσ(r, r1)−∇1ρσ(r1, r)]2|r1=r

=
1

2
[∇1ρσ(r, r1) +∇ρσ(r, r1)]2 − 1

2
[∇1ρσ(r, r1)−∇ρσ(r, r1)]2|r1=r

=
1

2
[∇ρσ(r)]2 − 1

2
[2ijσ(r)]2

=
1

2
[∇ρσ(r)]2 + 2jσ(r)2,

(B.10)

then,

∇2
1
|ρσ(r, r1)|2
ρσ(r)

|r1=r = ∇2ρσ(r)− 2τσ(r) +
1

2

|∇ρσ(r)|2
ρσ(r)

+ 2j2
σ(r). (B.11)
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[48] G. Röpke, A. Grigo, K. Sumiyoshi, and H. Shen, Clusters and condendates in the
nuclear matter equation of state, p. 73. Dordrecht: Springer Netherlands, 2006.

[49] M. Girod and P. Schuck, “α-particle clustering from expanding self-conjugate nuclei
within the hartree–fock–bogoliubov approach,” Phys. Rev. Lett., vol. 111, p. 132503,
Sep 2013.
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